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Dynamic moduli of high molecular weight monodisperse polystyrene melts and their binary blends have been 
measured as a function of frequency. The critical frequency ~o~ and loss modulus G"(to~) corresponding to 
departure from Newtonian behaviour have been determined and related to the moments of molecular weight 
distribution. The experimental result that the product T,to¢ is independent of molecular weight distribution 
(Xw is the weight-average relaxation time, defined as Zw=r/0Je °) has been interpreted by assuming: (1) the 
validity of the empirical Cox-Merz rule; and (2) that the transition from Newtonian to non-Newtonian 
behaviour in a steady shear flow occurs for a characteristic recoverable strain. 

(Keywords: polymer melt rheology; polystyrene; binary Mead; non-Newtonian viscosity; temporary network model; 
dmracteristic recoverable strain) 

INTRODUCTION 

Steady shear viscosity of polymer melts has been the 
subject of many investigations. It is well known that at 
low shear rates the viscosity r/o is nearly constant, but 
decreases by several orders of magnitude if the shear rate 
exceeds some characteristic value ~. Experimentally, it 
has been found that the value of 1/~¢ is proportional to the 
weight-average relaxation time z,, which is defined as the 
product of the two viscoelastic constants in the terminal 
zone l ' 2 :  

*w=,7oJ ° O) 

Zw~c = C (2) 

where r/o is the Newtonian viscosity and jo the zero shear 
recoverable compliance. C is a constant whose exact 
value depends on the way ~ is defined from the flow curve. 

From equation (2) it is clear that the critical condition 
for the transition from Newtonian to non-Newtonian 
behaviour depends closely on average molecular weight 
and molecular weight distribution (MWD) of the melt. 

On the other hand, the empirical rule of Cox and Merz 3 
postulates that the magnitude of the complex viscosity 
should be close to the steady shear viscosity for equivalent 
values of frequency and shear rate: 

t]*(O)) = [71'((9) 2 4- t/tt (O)) 2] 1/2 = / / ( : )  O) = :  (3) 

Equation (3) can be written in another form involving 
dynamic modulus and shear stress: 

G*(~o) = a('~) ~o='~ (4) 

At the critical shear rate, equation (4) defines a critical 
shear stress a0(~o): 

6 . ( o , o )  =,7o(~o) ~oo=~o 
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(5) 

In this study, we investigate by dynamic tests how the 
values of co o ~wco¢ and G"(co,) (which is nearly identical 
with G*(coc) at low frequencies) depend on average 
molecular weight and molecular weight distribution. 
Assuming that the Cox-Merz rule is verified, a tentative 
physical meaning is given for the corresponding results in 
steady shear flow. 

EXPERIMENTAL 

Anionically polymerized narrow MWD polystyrene 
samples and two series of their binary blends were 
investigated. Among these samples, $620 and $6224 as 
well as $611 and $5675 have already been studied in 
previous works. L1, L2 and L3 were synthesized and 
characterized by gel permeation chromatography and 
light scattering. The binary blends ($611-$567 and L1- 
L2) were obtained by dissolving the corresponding 
quantities of components in benzene, the solvent then 
being removed by freeze drying, as described in a previous 
paper 5. The molecular characteristics of the samples are 
shown in Table I. 

Using a mechanical spectrometer (Rheometrics RMS- 
605), the dynamic moduli G' and G" were measured as a 
function of frequency in a cone and plate geometry. The 
temperature range investigated was 120-220°C and 
master curves were drawn at 140°C for all samples. 

Zero-shear Newtonian viscosity r/o and steady-state 
recoverable compliance jo were calculated from the 
values of storage modulus G' and loss modulus G" at low 
frequencies, according to the following relationships: 

t/o = lim t/'(m)= lim G"(to) (6) 
t~O o~0  09 

j o  ," G'(co) 
° = u m  ~ 2 (7)  ~-o[6 (o,)] 
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Table 1 Molecular characteristics of the samples 

Mw 
Sample (g tool- t) Mw/Mn 

LI 91000 1.15 
L2 460000 1.23 
L3 420 000 1.15 
$611 120000 1.10 
$620 170000 1.05 
$622 585 000 1.28 
$567 970000 1.19 

Table 2 Values of ~/o, jo, toe, G"(tac) and %tOe at 140°C for 
monodisperse polystyrene samples 

log ~o log Je ° log to c log G"(COc) 
Sample (Pa s) (Pa -~) (tad sec -1) (Pa) "twCOc 

L1 5.92 - 5.20 - 1.42 4A7 0.19 
$611 6.30 -5.08 - 1.90 4.38 0.21 
$620 6.84 - 5.04 - 2.42 4.40 0.24 
L3 8 20 - 4.80 - 4.04 4.14 0.23 
L2 8.37 - 4.78 - 4.28 4.07 0.21 
$622 8.87 -4.70 -4.80 4.05 0.24 
$567 9.55 -4.80 -5.35 4.18 0.25 

calculated as a function of the weight-average relaxation 
times Zw~ of its monodisperse components 5: 

% = ~p :wi  oc Q= (12) 

where ~ is the volume fraction (here identical with the 
weight fraction) of component i, and Qx is a moment of 
the molecular weight distribution function defined as: 

Q x = frk(M)M ~dM ( 13 ) 

From equation (12) and the well known power law for 
zero-shear viscosity (r/oocM$), the recoverable com- 
pliance jo can be calculatedS: 

J°ocQ=/Q=~ (14) 

The critical value of the loss modulus G"(coo) can then 
be expressed as a function of MWD according to 
equations (10) and (14): 

- a - 1 G (oJc)~7:(Qa/Q1) (15) 

The data for monodisperse samples are shown in Table 
2, and those for blends in Table 3. 

If zero-shear viscosity r/o is plotted as a function of 
weight-average molecular weight Mw, the well known 
power law is found to be verified for monodisperse 
samples as well as for blends, according to the following 
relationship s: 

rio = K M  3"6 (8) 

REPRESENTATION OF RESULTS AS A 
FUNCTION OF MWD 

As already mentioned in the Introduction, one needs a 
method to define in a reproducible way the critical shear 
rate ~ or its equivalent cot from the flow curves or the 
dynamic master curves. 

In this study, co, is arbitrarily chosen as the frequency at 
which ~/'(co)=0.95r/o. This value approximately 
corresponds to the frequency at which the slope of the loss 
modulus versus frequency curve on a double logarithmic 
plot becomes different from one. 

Values of G"(coo), o9~ and z,co¢ (where % is calculated 
from ~/o and jo according to equation (1)) for all 
monodisperse polymer melts and binary blends are 
shown in Tables 2 and 3, respectively. In Figure 1, it is seen 
that %c% may be considered as independent of molecular 
weight and molecular weight distribution. The mean and 
standard deviation of this parameter are: 

ZwO~ = 0.22 _ 0.03 (9) 

From equation (9), the following relationships can be 
derived: 

G"(ogc)=C/Jf (10) 

coo=C/% (11) 

In a previous paper, we suggested that the weight- 
average relaxation time z,  of a polydisperse melt could be 

whereas the value of toc is related to molecular weight and 
MWD through equations (11) and (12): 

o~c~Q~ -1 (16) 

Table 3 Numerical values of~/o, Je °,coc, G"(tOc) and x~coc at 140°C for 
binary blends of monodisperse polystyrene samples 

log r/o log jo log to c log G"(COc) 
Samples (Pa s) (Pa -1) (tad s - t )  (Pa) rwW c 

S611-10% $567 7.17 -3.34 -4.53 2.62 0.19 
S611-20% S567 7.66 -3.51 -4.76 2.88 0.25 
S611--40% $567 8.50 -4.07 -5.14 3.34 0.19 
S611-60% S567 8.91 -4.37 -5.20 3.69 0.22 

L1-10% L2 6.45 -3.80 -3.26 3.16 0.25 
L1-15% L2 6.70 -3.83 -3.50 3.20 0.)3 
L 1-20 % L2 6.85 - 3.92 - 3.56 3.26 0.23 
L1--40 % L2 7.34 -4.28 -3.74 3.58 0.21 
L 1-60 % L2 7.74 - 4.40 - 3.98 3.74 0.23 
L1-80% L2 8.18 -4.62 -4.24 3.92 0.20 
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Results for monodisperse melts 
For polymer melts with narrow MWD,  equations (15) 

and (16) become: 

- 0 G (o9c) ~ M w (17) 

o ) e ~ M w  a (18) 

In Figure 2, log G"(oge) is plotted as a function of log 
M,.  As predicted by equation (17), this parameter is 
almost independent of molecular weight. 

In Figure 3, where log o~ c is plotted as a function of log 
M,,, a straight line is obtained in agreement with equation 
(18), with a slope of - 3.73 to be compared with the value 
of a = 3.6 obtained in equation (8). 

Results for binary blends 
For binary blends of monodisperse melts, the moments 

QI and Q= of the molecular weight distribution can easily 
be calculated: 

QI=dP,M, +dp2M 2, Qo=¢IM"+¢2 Ma (19) 

In Figure 4, log G"(o~e) is plotted as a function of 
log QJQ~ for two series of binary blends and, in Figure 5, 
log tae is plotted as a function of log Q= for the same 
samples. In both cases, straight lines are obtained. The 
approximate values of the slopes are - 1.04 and - 1.02, 
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Figure 2 Critical loss modulus G"(toe) as a function of weight-average 
molecular weight for monodisperse samples 
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Figure 3 Critical frequency toe as a function of weight-average 
molecular weight for monodisperse samples 
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Figure 4 Critical loss modulus G"(o~e) as a function of Q=/Q*l for binary 
blends. (1"1) LI-L2 blends, (m) $611--$567 blends 
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Figure $ Critical frequency toe as a function of Q, for monodisperse 
samples and binary blends. (O) Monodisperse samples, (l'q) L1-L2 
blends, (m) $611--$567 blends 

respectively, which is close to the expected value of - 1 
(equations (15) and (16)). 

All data analysed here are listed in Table 3. 

C O M P A R I S O N  WITH A GENERAL MAXWELL 
M O D E L  

The results of this study show that if a critical frequency 
o~o is defined as the value at which t/'(co)=0.95r/o, the 
product ZwOge is approximately independent of molecular 
weight and MWD.  A similar behaviour has been 
observed by Prest et al. 6. They found that for a frequency 
such as t/oJ°m = 1, the value of the dynamic viscosity 
~/*(m) is generally equal to (0.67+0.03)r/o for 
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monodisperse as well as for polydisperse polystyrene 
samples. 

According to the theory of Doi and Edwards (which 
reduces to a general Maxwell model in the linear 
viscoelastic range), the dynamic viscosities q'(o~) and 
r/*(co) have the following expressions7: 

0 p 
r/, = 8GNTd ~ 1 1 (20) 

I t2  ~p-4 l+(coTd)2/p ̀  

0 p r/* - 8G~Td V 1 [1 + (o~Td)21p2] '12 (21) 
-- rr2 o~ p4 1 + (O)Td)2/p 4 

where Td is the longest relaxation time, related to the 
weight-average relaxation time Zw byS: 

10 

At low frequencies, the zero-shear viscosity can be 
calculated according to equation (20): 

qo = limr/' = (n2/12)G°Td (22)  
t a r o  

If one looks at the values of r/' and r/* for the three 
frequencies at which the product %~oc is, respectively, 
equal to 0.22, 0.5 and 1, equations (20) and (21) give: 

rwog~ =0.22: q'(coc) =0.95qo, r/*(og~) = 0.98~/o 

rwO9¢=0.50: ~'(co~)=0.80qo, q*(~Oc)=0.90t/o (23) 

%o9~= 1.00: r/'(~oc) =0.51qo, ~/*(~¢)=0.71r/o 

A satisfactory agreement with the experimental data of 
Prest et al. 6 and of this study is obtained. In fact, in the 
frequency range of interest (low frequencies) a Maxwell 
model with a single relaxation time will give very similar 
results, since for the Doi-Edwards model the 
contribution of the longest relaxation time Td rapidly 
becomes predominant at low frequencies. 

Finally, it should be noted that when Graessley and 
coworkers 9 investigated steady shear flow of 
monodisperse polyisoprene solutions, they defined #, as 
the shear rate at which r/($¢)=0.8eo and observed that 
Tw~¢ = 0.483 + 0.09, which is again in good agreement with 
the above calculations in the dynamic region. 

PHYSICAL MEANING OF PARAMETER C IN A 
STEADY SHEAR FLOW 

If the empirical Cox-Merz rule is assumed to be verified, 
the counterpart of G"(o~c) in steady shear flow will be the 
critical stress at which the viscosity begins to decrease. 
The results obtained in this study mean that the critical 
shear stress oc should be constant for high molecular 
weight monodisperse polymer melts, but should decrease 
with increasing polydispersity (just as G"(ogc) does). 
Actually, this behaviour has been observed 
experimentally ~ o. 

To understand the physical meaning of the constant 
value of the product zwco¢, equation (9) can be rewritten in 
the following form (if the Cox-Merz rule is still assumed 

to be verified): 

• 0 • ¢ ~wCOc = ZwT¢ = Je a~(7~) = ?R = C (24) 

Equation (24) shows that the parameter C=z.o9¢ 
represents a characteristic recoverable strain 7~, whose 
value is approximately independent of MWD. 

INTERPRETATION IN TERMS OF A 
TEMPORARY NETWORK MODEL 

Numerous theoretical approaches to rheological 
behaviour of linear high molecular weight polymer melts 
are based on the temporary network model 2'6'1~-~a 
According to Lodge's elastic liquid theory 12, temporary 
junctions between chains, which can be thought of as 
entanglements, are continually formed and released 
during the flow, but entanglement density (or average 
spacing between entanglements) is not a function of shear 
rate. This picture leads to a shear rate (or shear stress) 
independent viscosity. 

The represen;ation of a polymer melt as a dynamic 
entanglement network with a shear rate dependent 
density of junctions has been elaborated by different 
authors ~4,15. Generally, they assume that the 
concentration of entanglements decreases with increasing 
shear rate, which results in the shear-thinning behaviour. 

Keeping the general ideas of the network models, it can 
be assumed that the macroscopic recoverable strain 
originates from the deformation of the entanglement 
network, which is in turn related to the deformation of the 
network strands between coupling junctions. On the 
other hand, equation (23) shows that as soon as the 
recoverable strain overshoots some critical value ~a, the 
viscosity begins to decrease. In terms of the temporary 
network model, we can therefore hypothesize that the 
transition from Newtonian to non-Newtonian behaviour 
occurs for a given deformation of the chain segments 
between entanglement junctions. Actually, when this 
deformation exceeds a given value (of the order of C),a 
certain number of junctions will be released, leading to 
the above mentioned strain-induced disentanglement effect 
(which is an additional effect with respect to the thermally 
induced entanglement--disentanglement process). 

Finally, it is desirable to show that the MWD 
dependence of zero-shear recoverable compliance is not 
in contradiction with the temporary network concept. 

One has to explain at least qualitatively why, for 
temporary networks, recoverable compliance increases 
with polydispersity, although the average molecular 
weight between entanglement junctions is constant, 
whereas for networks with permanent junctions 
(crosslinked networks), compliance depends only on 
molecular weight between junction points. 

In fact, if a crosslinked network is submitted to a 
constant shear rate for a time t, all the applied 
deformation is recoverable: 

7R = 7 = t~ (25)  

From classical rubber elasticity theoryX6: 

J N = 7 - - = ~ M ~  -1 (26) 
try 
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where Mc is the average molecular weight between 
crosslinking points. 

For a polymer melt, equation (24) shows that steady- 
state recoverable strain (at low shear rates) depends on 
the product of applied shear rate and weight-average 
relaxation time Zw (instead of total time of flow t for a 
crosslinked network), which can be thought of as the 
average entanglement lifetime: 

yR=z.: (27) 

Going back to the MWD dependence of the weight- 
average relaxation time: 

jo_~'R_ ~w:' Q~ 
r/o OCQ~ (28) 

Equations (27) and (28) show how the increase of 
recoverable compliance with polydispersity can be 
understood in the framework of the temporary network 
model. 

CONCLUSIONS 

The general conclusion to be drawn from this study is that 
the transition from Newtonian to non-Newtonian 
behaviour occurs at a given recoverable strain, which is 
independent of molecular weight distribution. A tentative 
explanation of this result on a molecular level may be 
given by recalling an experimental behaviour observed on 
chemically crosslinked rubbers. For permanent 
networks, it has been shown that the deformation of the 
crosslinking points is nearly affine (with the macroscopic 
deformation) only at small strains, but markedly non- 
affme (in fact lower than the macroscopic deformation) at 
large strains. On the other hand, at constant macroscopic 
strain, the higher the molecular weight between 
crosslinks, the more pronounced the difference between 
macroscopic and microscopic deformation (the higher the 
non-affinity of displacement of crosslinking points) 17. 
For uncrosslinked melts, we may similarly hypothesize 
that, for low shear rates, deformation of chain segments 
between entanglements is small and affine with the 
macroscopic recoverable strain. At the same time, the 
average spacing between entanglements is not affected by 
the flow, leading to shear rate independent entanglement 
density and constant viscosity. When the critical shear 
rate ~c is exceeded, the deformation of chain segments 
reaches the critical recoverable strain (~R~0.22), for 
which the chain tension causes some of the junction 
points to be disentangled (strain-induced disentangle- 
merit effect). For the remaining entanglements which have 
a higher average spacing, it may be assumed, by analogy 
with the crosslinked rubbers, that the deformation of the 
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chain segments between these entanglements is lower 
than the macroscopic recoverable strain. At the same 
time, entanglement density is decreased and viscosity 
becomes a decreasing function of shear rate. 

Finally, if one assumes that the strain-induced 
disentanglement process actually occurs at a given 
tension of chain segments between entanglement points, 
one should observe: (1) that the critical recoverable strain 
has a universal value independent of molecular structure 
(average molecular weight, MWD, and branching) - this 
point seems to be verified by the experimental results of 
Graessley et al. 9 and this study; and (2) that if a chain 
segment with an average molecular weight ,~M, is 
labelled within a principal chain (for instance a (PSH)- 
(PSD)-(PSH) polystyrene copolymer with a deuterated 
sequence), the deformation of this segment (as measured 
by SANS experiments) should be directly proportional to 
shear stress only for shear rates lower than ~¢, and a 
different behaviour should be observed at higher shear 
rates. The present study suggests that such an experiment 
would be helpful in understanding the non-Newtonian 
behaviour on a molecular basis. 
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